Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.665
Filtrar
1.
Nat Commun ; 15(1): 1789, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413608

RESUMO

Out-of-plane fluctuations, also known as stochastic displacements, of biological membranes play a crucial role in regulating many essential life processes within cells and organelles. Despite the availability of various methods for quantifying membrane dynamics, accurately quantifying complex membrane systems with rapid and tiny fluctuations, such as mitochondria, remains a challenge. In this work, we present a methodology that combines metal/graphene-induced energy transfer (MIET/GIET) with fluorescence correlation spectroscopy (FCS) to quantify out-of-plane fluctuations of membranes with simultaneous spatiotemporal resolution of approximately one nanometer and one microsecond. To validate the technique and spatiotemporal resolution, we measure bending undulations of model membranes. Furthermore, we demonstrate the versatility and applicability of MIET/GIET-FCS for studying diverse membrane systems, including the widely studied fluctuating membrane system of human red blood cells, as well as two unexplored membrane systems with tiny fluctuations, a pore-spanning membrane, and mitochondrial inner/outer membranes.


Assuntos
Grafite , Humanos , Espectrometria de Fluorescência/métodos , Membrana Celular/fisiologia , Membranas , Transferência de Energia
2.
Ann Biomed Eng ; 52(1): 12-21, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37326946

RESUMO

When a cell or tissue is exposed to a pulsed electric field (100-1000 V/cm), the cellular membrane permeabilizes for biomolecules that cannot pass an intact cellular membrane. During this electropermeabilization (EP), plasmid deoxyribonucleic acid sequences encoding therapeutic or regulatory genes can enter the cell, which is called gene electrotransfer (GET). GET using micro-/nano technology provides higher spatial resolution and operates with lower voltage amplitudes compared to conventional bulk EP. Microelectrode arrays (MEAs), which are usually used for the recording and stimulation of neuronal signals, can be utilized for GET as well. In this study, we developed a specialized MEA for local EP of adherent cells. Our manufacturing process provides a most flexible electrode and substrate material selection. We used electrochemical impedance spectroscopy to characterize the impedance of the MEAs and the impact of an adherent cellular layer. We verified the local EP functionality of the MEAs by loading a fluorophore dye into human embryonic kidney 293T cells. Finally, we demonstrated a GET with a subsequent green fluorescent protein expression by the cells. Our experiments prove that a high spatial resolution of GET can be obtained using MEAs.


Assuntos
Eletroporação , Corantes Fluorescentes , Humanos , Microeletrodos , Eletroporação/métodos , Membrana Celular/fisiologia , Impedância Elétrica
4.
Curr Opin Cell Biol ; 86: 102294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101114

RESUMO

Over the past 25 years, membrane tension has emerged as a primary mechanical factor influencing cell behavior. Although supporting evidences are accumulating, the integration of this parameter in the lifecycle of cells, organs, and tissues is complex. The plasma membrane is envisioned as a bilayer continuum acting as a 2D fluid. However, it possesses almost infinite combinations of proteins, lipids, and glycans that establish interactions with the extracellular or intracellular environments. This results in a tridimensional composite material with non-trivial dynamics and physics, and the task of integrating membrane mechanics and cellular outcome is a daunting chore for biologists. In light of the most recent discoveries, we aim in this review to provide non-specialist readers some tips on how to solve this conundrum.


Assuntos
Mecanotransdução Celular , Proteínas , Mecanotransdução Celular/fisiologia , Membrana Celular/fisiologia
5.
Nat Rev Neurosci ; 24(10): 640-652, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620600

RESUMO

Neuronal membrane excitability must be resilient to perturbations that can take place over timescales from milliseconds to months (or even years in long-lived animals). A great deal of attention has been paid to classes of homeostatic mechanisms that contribute to long-term maintenance of neuronal excitability through processes that alter a key structural parameter: the number of ion channel proteins present at the neuronal membrane. However, less attention has been paid to the self-regulating 'automatic' mechanisms that contribute to neuronal resilience by virtue of the kinetic properties of ion channels themselves. Here, we propose that these two sets of mechanisms are complementary instantiations of feedback control, together enabling resilience on a wide range of temporal scales. We further point to several methodological and conceptual challenges entailed in studying these processes - both of which involve enmeshed feedback control loops - and consider the consequences of these mechanisms of resilience.


Assuntos
Canais Iônicos , Neurônios , Animais , Neurônios/fisiologia , Canais Iônicos/fisiologia , Membrana Celular/fisiologia
6.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511222

RESUMO

The aim of this review article is to collate recent contributions of proteomic studies to cystic fibrosis transmembrane conductance regulator (CFTR) biology. We summarize advances from these studies and create an accessible resource for future CFTR proteomic efforts. We focus our attention on the CFTR interaction network at the cell surface, thus generating a CFTR 'surfaceome'. We review the main findings about CFTR interactions and highlight several functional categories amongst these that could lead to the discovery of potential biomarkers and drug targets for CF.


Assuntos
Membrana Celular , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Proteômica , Humanos , Membrana Celular/fisiologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transporte de Íons , Mutação , Transdução de Sinais
7.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1064-1074, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37475548

RESUMO

Membraneless organelles (MLO) regulate diverse biological processes in a spatiotemporally controlled manner spanning from inside to outside of the cells. The plasma membrane (PM) at the cell surface serves as a central platform for forming multi-component signaling hubs that sense mechanical and chemical cues during physiological and pathological conditions. During signal transduction, the assembly and formation of membrane-bound MLO are dynamically tunable depending on the physicochemical properties of the surrounding environment and partitioning biomolecules. Biomechanical properties of MLO-associated membrane structures can control the microenvironment for biomolecular interactions and assembly. Lipid-protein complex interactions determine the catalytic region's assembly pattern and assembly rate and, thereby, the amplitude of activities. In this review, we will focus on how cell surface microenvironments, including membrane curvature, surface topology and tension, lipid-phase separation, and adhesion force, guide the assembly of PM-associated MLO for cell signal transductions.


Assuntos
Condensados Biomoleculares , Membrana Celular , Mecanotransdução Celular , Membrana Celular/fisiologia , Condensados Biomoleculares/fisiologia , Adesão Celular , Lipídeos de Membrana , Animais
8.
Cells ; 12(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371108

RESUMO

Rho-GTPases are central regulators within a complex signaling network that controls cytoskeletal organization and cell movement. The network includes multiple GTPases, such as the most studied Rac1, Cdc42, and RhoA, along with their numerous effectors that provide mutual regulation through feedback loops. Here we investigate the temporal and spatial relationship between Rac1 and Cdc42 during membrane ruffling, using a simulation model that couples GTPase signaling with cell morphodynamics and captures the GTPase behavior observed with FRET-based biosensors. We show that membrane velocity is regulated by the kinetic rate of GTPase activation rather than the concentration of active GTPase. Our model captures both uniform and polarized ruffling. We also show that cell-type specific time delays between Rac1 and Cdc42 activation can be reproduced with a single signaling motif, in which the delay is controlled by feedback from Cdc42 to Rac1. The resolution of our simulation output matches those of time-lapsed recordings of cell dynamics and GTPase activity. Our data-driven modeling approach allows us to validate simulation results with quantitative precision using the same pipeline for the analysis of simulated and experimental data.


Assuntos
Membrana Celular , Movimento Celular , Proteínas rac1 de Ligação ao GTP , Proteínas rho de Ligação ao GTP , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Transdução de Sinais
9.
Cryobiology ; 112: 104552, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301358

RESUMO

Maintenance of cells within a volume range compatible with their functional integrity is a critical determinant of cell survival after cryopreservation, and quantifying this osmotically induced damage is a part of the rational design of improved cryopreservation protocols. The degree that cells tolerate osmotic stress significantly impacts applicable cryoprotocols, but there has been little research on the time dependence of this osmotic stress. Additionally, the flavonoid silymarin has been shown to be hepatoprotective. Therefore, here we test the hypotheses that osmotic damage is time-dependent and that flavonoid inclusion reduces osmotic damage. In our first experiment, cells were exposed to a series of anisosmotic solutions of graded hypo- and hypertonicity for 10-40 min, resulting in a conclusion that osmotically induced damage is time dependent. In the next experiment, adherent cells preincubated with silymarin at the concentration of 10-4 mol/L and 10-5 mol/L showed a significant increase in cell proliferation and metabolic activity after osmotic stress compared to untreated matched controls. For instance, when adherent cells preincubated with 10-5 mol/L silymarin were tested, resistance to osmotic damage and a significant increase (15%) in membrane integrity was observed in hypo-osmotic media and a 22% increase in hyperosmotic conditions. Similarly, significant protection from osmotic damage was observed in suspended HepG2 cells in the presence of silymarin. Our study concludes that osmotic damage is time dependent, and the addition of silymarin leads to elevated resistance to osmotic stress and a potential increase in the cryosurvival of HepG2 cells.


Assuntos
Silimarina , Espermatozoides , Masculino , Humanos , Espermatozoides/fisiologia , Membrana Celular/fisiologia , Silimarina/farmacologia , Silimarina/metabolismo , Células Hep G2 , Suspensões , Criopreservação/métodos , Pressão Osmótica
10.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37141105

RESUMO

Trafficking of cell-surface proteins from endosomes to the plasma membrane is a key mechanism to regulate synaptic function. In non-neuronal cells, proteins recycle to the plasma membrane either via the SNX27-Retromer-WASH pathway or via the recently discovered SNX17-Retriever-CCC-WASH pathway. While SNX27 is responsible for the recycling of key neuronal receptors, the roles of SNX17 in neurons are less understood. Here, using cultured hippocampal neurons, we demonstrate that the SNX17 pathway regulates synaptic function and plasticity. Disruption of this pathway results in a loss of excitatory synapses and prevents structural plasticity during chemical long-term potentiation (cLTP). cLTP drives SNX17 recruitment to synapses, where its roles are in part mediated by regulating the surface expression of ß1-integrin. SNX17 recruitment relies on NMDAR activation, CaMKII signaling, and requires binding to the Retriever and PI(3)P. Together, these findings provide molecular insights into the regulation of SNX17 at synapses and define key roles for SNX17 in synaptic maintenance and in regulating enduring forms of synaptic plasticity.


Assuntos
Potenciação de Longa Duração , Proteínas de Membrana , Plasticidade Neuronal , Nexinas de Classificação , Membrana Celular/fisiologia , Proteínas de Membrana/fisiologia , Transporte Proteico , Sinapses/fisiologia , Nexinas de Classificação/fisiologia , Células Cultivadas , Neurônios/fisiologia
11.
Methods Cell Biol ; 176: 235-250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164540

RESUMO

The ciliary membrane is continuous with the plasma membrane but has distinct lipid and protein composition, which is key to defining the function of the primary cilium. Ciliary membranes dynamically assemble and disassemble in association with the cell cycle and directly transmit signals and molecules through budding membranes. Various imaging approaches have greatly advanced the understanding of the ciliary membrane function. In particular, fluorescence live-cell imaging has revealed important insights into the dynamics of ciliary membrane assembly by monitoring the changes of fluorescent-tagged ciliary proteins. Protein dynamics can be tracked simultaneously using multi-color live cell imaging by coupling ciliary-associated factors with different colored fluorescent tags. Ciliary membrane and membrane associated-proteins such as Smoothened, 5-HTr6, SSTR3, Rab8a, and Arl13b have been used to track ciliary membranes and centriole proteins like Centrin1/2, CEP164, and CEP83 are often used to mark the ciliary basal body. Here, we describe a method for studying ciliogenesis membrane dynamics using spinning disk confocal live-cell imaging.


Assuntos
Cílios , Imagem Óptica , Cílios/metabolismo , Membrana Celular/fisiologia
12.
Nano Lett ; 23(7): 2467-2475, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36975035

RESUMO

Mechanical signals establish two-way communication between mammalian cells and their environment. Cells contacting a surface exert forces via contractility and transmit them at the areas of focal adhesions. External stimuli, such as compressive and pulling forces, typically affect the adhesion-free cell surface. Here, we demonstrate the collaborative employment of Fluidic Force Microscopy and confocal Traction Force Microscopy supported by the Cellogram solver to enable a powerful integrated force probing approach, where controlled vertical forces are applied to the free surface of individual cells, while the concomitant deformations are used to map their transmission to the substrate. Force transmission across human cells is measured with unprecedented temporal and spatial resolution, enabling the investigation of the cellular mechanisms involved in the adaptation, or maladaptation, to external mechanical stimuli. Altogether, the system enables facile and precise force interrogation of individual cells, with the capacity to perform population-based analysis.


Assuntos
Adesão Celular , Matriz Extracelular , Adesões Focais , Mecanotransdução Celular , Animais , Humanos , Adesão Celular/fisiologia , Membrana Celular/fisiologia , Adesões Focais/metabolismo , Adesões Focais/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Fenômenos Mecânicos , Mecanotransdução Celular/fisiologia , Microscopia de Força Atômica/métodos , Matriz Extracelular/fisiologia
13.
Electrophoresis ; 44(9-10): 845-853, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36857493

RESUMO

Dielectrophoretic analysis of cell electrical properties via the Clausius-Mossotti model has been widely used to estimate values of the membrane conductance, membrane capacitance and cytoplasm conductivity of cells. However, although the latter two values produced by this method compare well to those acquired by other electrophysiological methods, the membrane conductance is often substantially larger than that acquired by methods such as patch clamp. In this paper, the electrical properties of red blood cells (RBC) are analysed at two conductivities and following membrane-altering treatments, to develop a mathematical model of membrane conductance. Results suggest that the RBC "membrane conductance" term is primarily dominated by surface conduction, comprising an element related to medium conductivity augmented by conduction in the electrical double layer, which is in turn altered by the cell membrane potential. Validation of the relationship between membrane potential and membrane conductance was performed using platelets, where a similar relationship was observed. This sheds new light on the origin and significance of the membrane conductance term and explains for the first time phenomena of alterations in the parameter counter to changes in membrane potential or cytoplasm conductivity.


Assuntos
Plaquetas , Eritrócitos , Potenciais da Membrana , Membrana Celular/fisiologia , Condutividade Elétrica
14.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834961

RESUMO

Plants have evolved elaborate mechanisms to sense, respond to and overcome the detrimental effects of high soil salinity. The role of calcium transients in salinity stress signaling is well established, but the physiological significance of concurrent salinity-induced changes in cytosolic pH remains largely undefined. Here, we analyzed the response of Arabidopsis roots expressing the genetically encoded ratiometric pH-sensor pHGFP fused to marker proteins for the recruitment of the sensor to the cytosolic side of the tonoplast (pHGFP-VTI11) and the plasma membrane (pHGFP-LTI6b). Salinity elicited a rapid alkalinization of cytosolic pH (pHcyt) in the meristematic and elongation zone of wild-type roots. The pH-shift near the plasma membrane preceded that at the tonoplast. In pH-maps transversal to the root axis, the epidermis and cortex had cells with a more alkaline pHcyt relative to cells in the stele in control conditions. Conversely, seedlings treated with 100 mM NaCl exhibited an increased pHcyt in cells of the vasculature relative to the external layers of the root, and this response occurred in both reporter lines. These pHcyt changes were substantially reduced in mutant roots lacking a functional SOS3/CBL4 protein, suggesting that the operation of the SOS pathway mediated the dynamics of pHcyt in response to salinity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Salinidade , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Cloreto de Sódio/farmacologia , Transdução de Sinais/fisiologia
15.
Proc Natl Acad Sci U S A ; 120(6): e2208253120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716363

RESUMO

The ability of cells to sense and communicate their shape is central to many of their functions. Much is known about how cells generate complex shapes, yet how they sense and respond to geometric cues remains poorly understood. Septins are GTP-binding proteins that localize to sites of micrometer-scale membrane curvature. Assembly of septins is a multistep and multiscale process, but it is unknown how these discrete steps lead to curvature sensing. Here, we experimentally examine the time-dependent binding of septins at different curvatures and septin bulk concentrations. These experiments unexpectedly indicated that septins' curvature preference is not absolute but rather is sensitive to the combinations of membrane curvatures present in a reaction, suggesting that there is competition between different curvatures for septin binding. To understand the physical underpinning of this result, we developed a kinetic model that connects septins' self-assembly and curvature-sensing properties. Our experimental and modeling results are consistent with curvature-sensitive assembly being driven by cooperative associations of septin oligomers in solution with the bound septins. When combined, the work indicates that septin curvature sensing is an emergent property of the multistep, multiscale assembly of membrane-bound septins. As a result, curvature preference is not absolute and can be modulated by changing the physicochemical and geometric parameters involved in septin assembly, including bulk concentration, and the available membrane curvatures. While much geometry-sensitive assembly in biology is thought to be guided by intrinsic material properties of molecules, this is an important example of how curvature sensing can arise from multiscale assembly of polymers.


Assuntos
Membrana Celular , Septinas , Septinas/metabolismo , Membrana Celular/fisiologia
16.
J Microbiol Immunol Infect ; 56(2): 257-266, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36127231

RESUMO

BACKGROUND: The exploration of virology knowledge was limited by the optical technology for the observation of virus. Previously, a three-dimensional multi-resolution real-time microscope system (3D-MRM) was developed to observe the uptake of HIV-1-tat peptide-modified nanoparticles in cell membrane. In this study, we labeled HIV-1 virus-like particles (VLPs) with passivated giant quantum dots (gQDs) and recorded their interactive trajectories with human Jurkat CD4 cells through 3D-MRM. METHODS: The labeled of gQDs of the HIV-1 VLPs in sucrose-gradient purified viral lysates was first confirmed by Cryo-electronic microscopy and Western blot assay. After the infection with CD4 cells, the gQD-labeled VLPs were visualized and their extracellular and intracellular trajectories were recorded by 3D-MRM. RESULTS: A total of 208 prime trajectories was identified and classified into three distinct patterns: cell-free random diffusion pattern, directional movement pattern and cell-associated movement pattern, with distributions and mean durations were 72.6%/87.6 s, 9.1%/402.7 s and 18.3%/68.7 s, respectively. Further analysis of the spatial-temporal relationship between VLP trajectories and CD4 cells revealed the three stages of interactions: (1) cell-associated (extracellular) diffusion stage, (2) cell membrane surfing stage and (3) intracellular directional movement stage. CONCLUSION: A complete trajectory of HIV-1 VLP interacting with CD4 cells was presented in animation. This encapsulating method could increase the accuracy for the observation of HIV-1-CD4 cell interaction in real time and three dimensions.


Assuntos
Linfócitos T CD4-Positivos , Membrana Celular , HIV-1 , Microscopia Eletrônica , Pontos Quânticos , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/ultraestrutura , Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , HIV-1/ultraestrutura , Imageamento Tridimensional/métodos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Peptídeos Penetradores de Células/fisiologia , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Nanopartículas/ultraestrutura , Nanopartículas/virologia , Partículas Artificiais Semelhantes a Vírus/fisiologia , Microscopia Eletrônica/métodos
17.
Acta Biomater ; 157: 297-309, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543279

RESUMO

Studies on the interaction between cells and micromanipulation tools are necessary to optimize the procedures and improve the developmental potential of cells. The molecular dynamics simulation is not possible for such a large-scale simulation, and the spring-damped viscoelastic models and the constitutive equations of the continuum are usually adopted to model the cells as a whole without consideration of the different properties presented by the heterogeneous subcellular components. In this study, we utilized coarse-grained modeling to develop a subcellular model of suspension cell dynamics and a model of a holding micropipette for the fixation of a suspension cell, and designed a large-scale, accurate mesoscopic simulation environment for specific cell micromanipulation. We established a triangular mesh cell membrane and a uniformly distributed, non-intersecting cytoskeleton network and added polymerization/depolymerization processes to connect the cytoskeleton chains with the membrane and cross-linking proteins. In the cell aspiration model, we adopted the profile of the reversed Poiseuille flow to calibrate the viscosity of the fluid and set the bounce-back condition and the appropriate solid-fluid force coefficient to realize non-slip flow at the boundary. The rheological properties of the cells during micropipette aspiration were further analyzed in the simulation by varying parameters such as the inner diameter of the micropipette, negative pressure, and maximum bond length. The model well reproduced the experimentally observed cell deformation phenomenon at low and high pressures. The dynamic response of the cell elongation observed from the simulation was consistent with that obtained from the analysis of the experimental data collected from a custom-designed micromanipulation system. STATEMENT OF SIGNIFICANCE: In this study, we extended the coarse-grained modeling of cells by developing a relatively large-scale micromanipulation environment consisting of a subcellular cell dynamics model and a fluid flow model for cell aspiration. We simulated cytoskeleton filaments that were uniformly distributed in space via applying Harmonic energy to model cytoskeleton with a high level of fidelity. The shortcoming of the soft repulsion in the solid-fluid interaction in the current simulation technique was solved by implementing the bounce-back boundary and the condition that the total force imposed by the wall particles on the fluid particles was equal to the pressure of the fluid. This work paved the way for understanding the mechanical properties of cells and improving the biological efficacy of micromanipulation.


Assuntos
Citoesqueleto , Elasticidade , Simulação por Computador , Membrana Celular/fisiologia , Reologia
18.
J Control Release ; 352: 385-398, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273528

RESUMO

In sonoporation-based macromolecular delivery, repetitive microbubble cavitation in the bloodstream results in repeated sonoporation of cells or sonoporation of non-sonoporated neighboring cells (i.e., adjacent to the sonoporated host cells). The resealing and recovery capabilities of these two types of sonoporated cells affect the efficiency and biosafety of sonoporation-based delivery. Therefore, an improved understanding of the preservation of viability in these sonoporated cells is necessary. Using a customized platform for single-pulse ultrasound exposure (pulse length 13.33 µs, peak negative pressure 0.40 MPa, frequency 1.5 MHz) and real-time recording of membrane perforation and intracellular calcium fluctuations (using propidium iodide and Fluo-4 fluorescent probes, respectively), spatiotemporally controlled sonoporation was performed to administer first and second single-site sonoporations of a single cell or single-site sonoporation of a neighboring cell. Two distinct intracellular calcium changes, reversible and irreversible calcium fluctuations, were identified in cells undergoing repeat reversible sonoporation and in neighboring cells undergoing reversible sonoporation. In addition to an increased proportion of reversible calcium fluctuations that occurred with repeated sonoporation compared with that in the initial sonoporation, repeated sonoporation resulted in significantly shorter calcium fluctuation durations and faster membrane resealing than that produced by initial sonoporation. Similarly, compared with those in sonoporated host cells, the intracellular calcium fluctuation recovery and membrane perforation resealing times were significantly shorter in sonoporated neighboring cells. These results demonstrated that the function recovery and membrane resealing capabilities after a second sonoporation or sonoporation of neighboring cells were potentiated in the short term. This could aid in sustaining the long-term viability of sonoporated cells, therefore improving delivery efficiency and biosafety. This investigation provides new insight into the resealing and recovery capabilities in re-sonoporation of sonoporated cells and sonoporation of neighboring cells and can help develop safe and efficient strategies for sonoporation-based drug delivery.


Assuntos
Cálcio , Sonicação , Sonicação/métodos , Microbolhas , Membrana Celular/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Permeabilidade da Membrana Celular/fisiologia
19.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563465

RESUMO

We propose a novel mechanism by which cancer cells can modulate the oxygen concentration within the nucleus, potentially creating low nuclear oxygen conditions without the need of an hypoxic micro-environment and suited for allowing cancer cells to resist chemo- and radio-therapy. The cells ability to alter intra-cellular oxygen conditions depends on the amount of cholesterol present within the cellular membranes, where high levels of cholesterol can yield rigid membranes that slow oxygen diffusion. The proposed mechanism centers on the competition between (1) the diffusion of oxygen within the cell and across cellular membranes that replenishes any consumed oxygen and (2) the consumption of oxygen in the mitochondria, peroxisomes, endoplasmic reticulum (ER), etc. The novelty of our work centers around the assumption that the cholesterol content of a membrane can affect the oxygen diffusion across the membrane, reducing the cell ability to replenish the oxygen consumed within the cell. For these conditions, the effective diffusion rate of oxygen becomes of the same order as the oxygen consumption rate, allowing the cell to reduce the oxygen concentration of the nucleus, with implications to the Warburg Effect. The cellular and nucleus oxygen content is indirectly evaluated experimentally for bladder (T24) cancer cells and during the cell cycle, where the cells are initially synchronized using hydroxeaurea (HU) at the late G1-phase/early S-phase. The analysis of cellular and nucleus oxygen concentration during cell cycle is performed via (i) RT-qPCR gene analysis of hypoxia inducible transcription factors (HIF) and prolyl hydroxylases (PHD) and (ii) radiation clonogenic assay every 2 h, after release from synchronization. The HIF/PHD genes allowed us to correlate cellular oxygen with oxygen concentration in the nucleus that is obtained from the cells radiation response, where the amount DNA damage due to radiation is directly related to the amount of oxygen present in the nucleus. We demonstrate that during the S-phase cells can become hypoxic in the late S-phase/early G2-phase and therefore the radiation resistance increases 2- to 3-fold.


Assuntos
Núcleo Celular , Colesterol , Hipóxia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/fisiologia , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Núcleo Celular/metabolismo , Colesterol/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Prolil Hidroxilases/metabolismo , Tolerância a Radiação/fisiologia , Fase S
20.
Biochim Biophys Acta Biomembr ; 1864(7): 183897, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231438

RESUMO

Our understanding of the role of membrane tension in the field of membrane biophysics is rapidly evolving from a passive construct to an active player in a variety of cellular phenomena. Membrane tension has been shown to be a key regulator of many cellular processes ranging including trafficking, ion channel activation, and the invasion of red blood cells by malaria parasites. Recent experimental advances in cells, including the development of a fluorescent tension reporter, have shown that membrane tension is heterogeneous. In this mini-review, I summarize the recent advances in membrane tension measurements and discuss the contributions from different cellular constituents such as the cortical cytoskeleton. Then, I will explore how these different complexities can be considered in biophysical models of different scales. Finally, I will elaborate on the need for iterations between models and experiments as technologies in both fields advance to enable us to obtain critical insights into the physiological role of membrane tension as a critical component of mechanotransduction.


Assuntos
Citoesqueleto , Mecanotransdução Celular , Biofísica , Membrana Celular/fisiologia , Canais Iônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...